Nano-Structures

Coherence in semiconductor nanostructures Part I: Generalities

Jacek Kasprzak

Equipe mixte CEA-CNRS "Nanophysique et semicondcuteurs" Institut Néel - CNRS Grenoble France

Warsaw University, October-December 2020

Sem	ICONC	uctors

Plan of the Lectures, 30 hours

Semiconductors, nanostructures & excitons

- 2 Enhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- In the second second
- 6 Retrieving single exciton coherence: experimental challenges
- Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Oherent spectroscopy of excitons in TMDs and their heterostrucutres

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- In the second second
- Setrieving single exciton coherence: experimental challenges
- Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Invariant of nonlinear spectroscopy
- Setrieving single exciton coherence: experimental challenges
- Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Ontions of nonlinear spectroscopy
- In the second second
- Single exciton coherence exploited with four-wave mixing
- ② Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Ontions of nonlinear spectroscopy
- **o** Retrieving single exciton coherence: experimental challenges
- Single exciton coherence exploited with four-wave mixing
- ② Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Invariant of nonlinear spectroscopy
- **o** Retrieving single exciton coherence: experimental challenges
- **o** Single exciton coherence exploited with four-wave mixing
- ② Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Invasion of nonlinear spectroscopy
- **o** Retrieving single exciton coherence: experimental challenges
- **o** Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Ocherent spectroscopy of excitons in TMDs and their heterostrucutres

S	em	ico	nd	uct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- Invasion of nonlinear spectroscopy
- **o** Retrieving single exciton coherence: experimental challenges
- **o** Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Solution Content spectroscopy of excitons in TMDs and their heterostrucutres

~				
- 5	em	icon	duct	ors

- Semiconductors, nanostructures & excitons
- Inhancing light-matter interaction with photonic devices
- Spontaneous coherence in ensembles of excitons and polaritons
- In the second second
- **o** Retrieving single exciton coherence: experimental challenges
- **o** Single exciton coherence exploited with four-wave mixing
- Ø Exciton-cavity system in the quantum strong coupling regime
- Oherent coupling in small ensembles of excitons
- Coherent spectroscopy of excitons in TMDs and their heterostrucutres

em		

Excitons

Nano-Structures

Outline

Nano-Structures

What is a semiconductor? A solid in which opto-electronic properties can be tuned via size, composition & controlled doping

• Electronic transport

Absorption and emission of light

Photo-Voltaics

Light Emitting Diodes

Nano-Structures

What is a semiconductor? A solid in which opto-electronic properties can be tuned via size, composition & controlled doping

Tunable Laser diodes

Avalanche Photo Diodes

From UV and blue to Mid-Infra Red and THz range

Nano-scale

Excitons

Nano-Structures

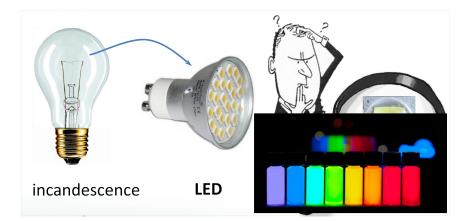
What is a semiconductor? A solid in which opto-electronic properties can be tuned via size, composition & controlled doping

Nano-scale

Excitons

Nano-Structures

What is a semiconductor? A solid in which opto-electronic properties can be tuned via size, composition & controlled doping

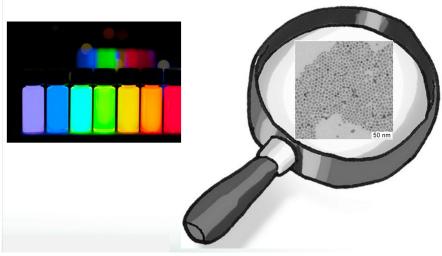


Nano-scale

Excitons

Nano-Structures

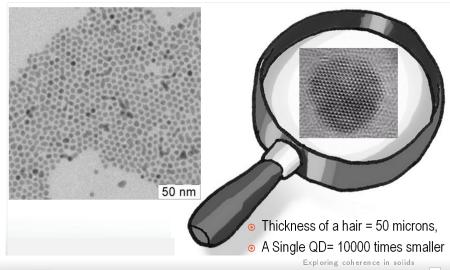
What is a semiconductor? A solid in which opto-electronic properties can be tuned via size, composition & controlled doping



Excitons

Nano-Structures

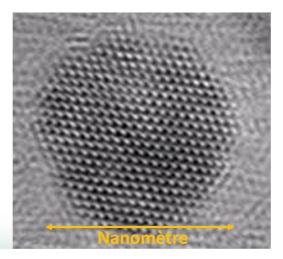
Towards the nanophysics NanoMeter=0.000000001 Meter



Excitons

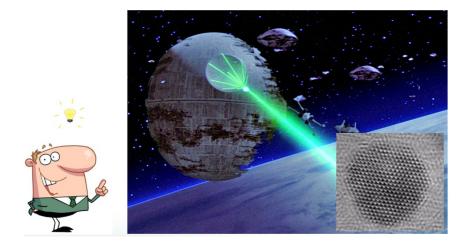
Nano-Structures

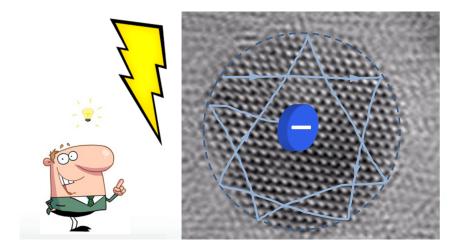
Towards the nanophysics NanoMeter=0.000000001 Meter



Excitons

Nano-Structures


Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second

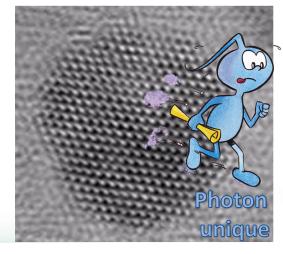

Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second

Nano-Structures

Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second

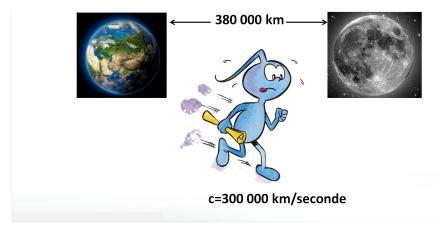
Nano-Structures

Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second



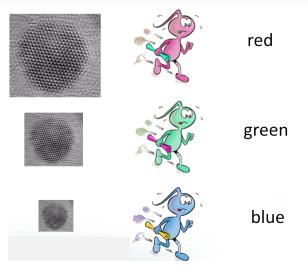
Excitons

Nano-Structures


Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second

Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second

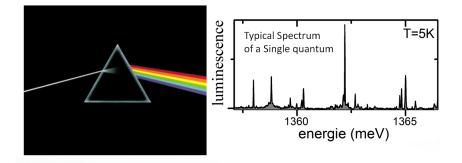
Nano-emitter \Rightarrow A single semiconductor Quantum Dot nanometric trap for charge carriers, 1 photon out each nano-second



Excitons

Nano-Structures

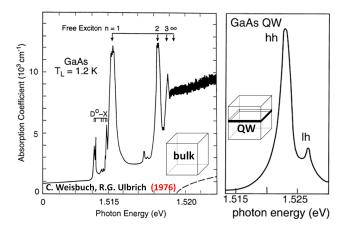
Optical spectroscopy color = size + composition (alloys)



Excitons

Nano-Structures

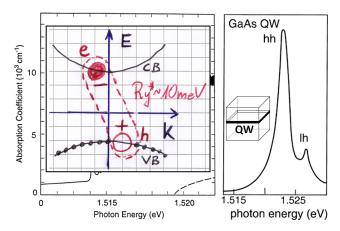
⊙ Intensiy vs. Color (Energy, wavelength, frequancy)



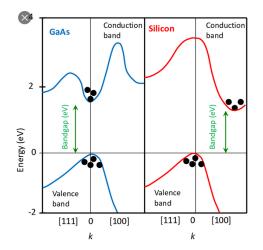
Semiconductor Optics \Rightarrow **Excitons** Ryd~0.01 eV, 1000 times weaker than in atoms

G. H. Wannier Phys. Rev. 52, 191 (1937): "the electron cannot escape its

hole completely"

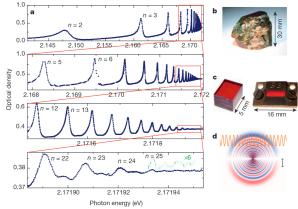

ī.

Semiconductor Optics \Rightarrow **Excitons** Ryd~0.01 eV, 1000 times weaker than in atoms

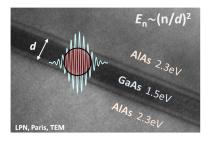

G. H. Wannier Phys. Rev. 52, 191 (1937): "the electron cannot escape its

hole completely"

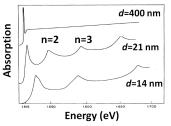
Optical Activity \Rightarrow **Bandgap: Direct vs. Indirect** Direct: GaAs, InAs, CdTe, TMD monolayers, Cu₂O Indirect: Si, Ge, TMDs bulk and multilayers



How to enhance the light-matter interaction ? Increase exciton oscillator strength, most prominent example is Cu_2O

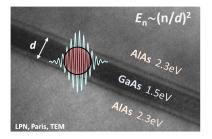

Gross (1952),...,Kazimierczuk et al., Nature 514, 343 (2014) Exciton extension up to $2 \mu m$ for high Rydberg states

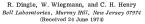
Giant Rydberg excitons in the copper oxide Cu₂O

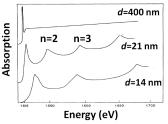

$\label{eq:Quantum confinement in nanostructures} Material growth with atomic precision \Rightarrow wavefunction engineering$

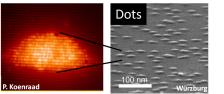
Quantum Wells: $d \sim \lambda_{dB} \sim (mT)^{-1/2}$

Quantum States of Confined Carriers in Very Thin Al_xGa_{1-x}As-GaAs-Al_xGa_{1-x}As Heterostructures

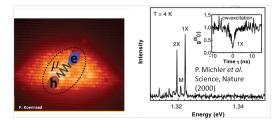

R. Dingle, W. Wiegmann, and C. H. Henry Bell Laboratories, Murray Hill, New Jersey 07974 (Received 24 June 1974)

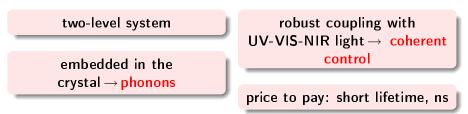

Nano-Structures


$\label{eq:Quantum confinement in nanostructures} Material growth with atomic precision \Rightarrow wavefunction engineering$


Quantum Wells: $d \sim \lambda_{dB} \sim (mT)^{-1/2}$

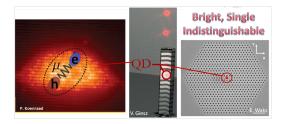
Quantum States of Confined Carriers in Very Thin Al_xGa_{1-x}As-GaAs-Al_xGa_{1-x}As Heterostructures

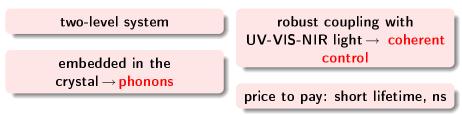




Nano-Structures

A quantum dot exciton Bright, nano-scopic source of quantum light from the solid Optically driven, fast qubit?

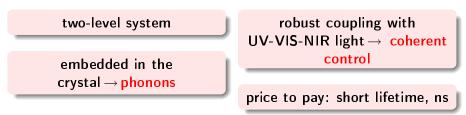




Excitons

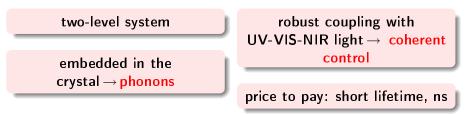
Nano-Structures

A quantum dot exciton Bright, nano-scopic source of quantum light from the solid Optically driven, fast qubit?



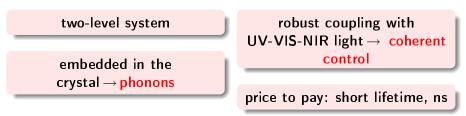
Nano-Structures

A quantum dot exciton Bright, nano-scopic source of quantum light from the solid Optically driven, fast qubit?

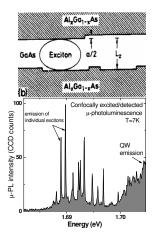


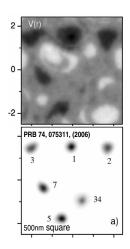
Nano-Structures

A quantum dot exciton Bright, nano-scopic source of quantum light from the solid Optically driven, fast qubit?

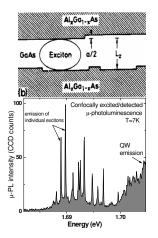


Nano-Structures

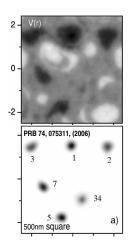

A quantum dot exciton Bright, nano-scopic source of quantum light from the solid Optically driven, fast qubit?


Nano-Structures

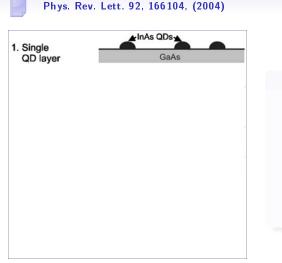
Single excitons localized on interface fluctuations of a Quantum Well


AlAs/GaAs/AlAs 5 nm single QW

- Growth Interruption ⇒ Formation of Monolayer Islands
- Wedge ⇒ Variation of Average Thickness
- Disorder Potential \Rightarrow $|\Psi|^2$ of localized X
- Large Extension ⇒ Large Osc. Str. ⇒
 Suitable for Non-Linear
 Spectroscopy


Nano-Structures

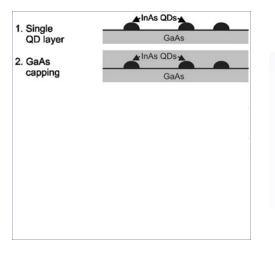
Single excitons localized on interface fluctuations of a Quantum Well



AlAs/GaAs/AlAs 5 nm single QW

- Growth Interruption \Rightarrow Formation of Monolayer Islands
- Wedge ⇒ Variation of Average Thickness
- Disorder Potential \Rightarrow $|\Psi|^2$ of localized X
- Large Extension ⇒ Large Osc. Str. ⇒
 Suitable for Non-Linear Spectroscopy

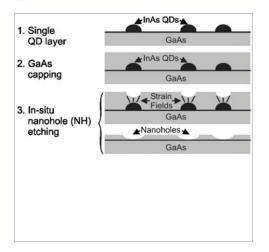
Multi-step self-assembly of Quantum Dots



- emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

Nano-Structures

Multi-step self-assembly of Quantum Dots

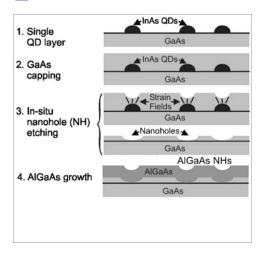


- emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

Nano-Structures

Multi-step self-assembly of Quantum Dots

Phys. Rev. Lett. 92, 166104, (2004)

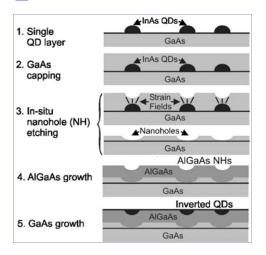


- \bullet emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

Nano-Structures

Multi-step self-assembly of Quantum Dots

Phys. Rev. Lett. 92, 166104, (2004)

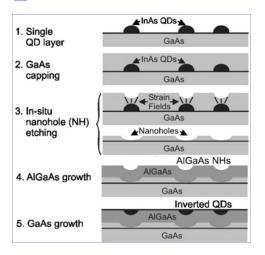


- \circ emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

Nano-Structures

Multi-step self-assembly of Quantum Dots

Phys. Rev. Lett. 92, 166104, (2004)

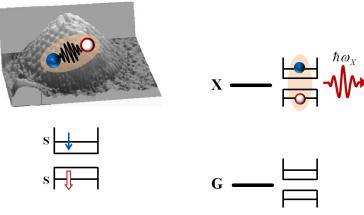


- \circ emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

Nano-Structures

Multi-step self-assembly of Quantum Dots

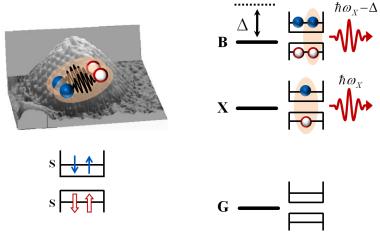
Phys. Rev. Lett. 92, 166104, (2004)



- emission \sim 750 nm
- strong-confinement: 200 meV
- ultra-low density
- strain-free
- controlled geometry

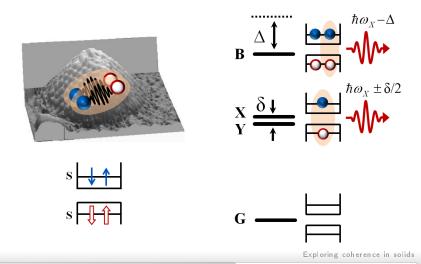
Nano-Structures

Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades


Y. Benny et al.Phys. Rev. B 86, 085306 (2012), PhD de Santis

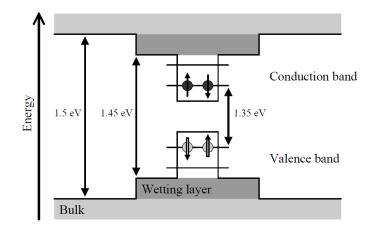
Nano-Structures

Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades


Y. Benny et al.Phys. Rev. B 86, 085306 (2012), PhD de Santis

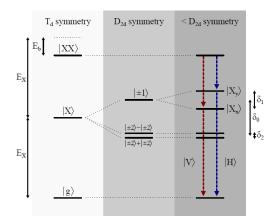
Nano-Structures

Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades

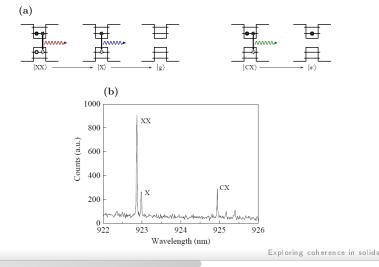

Y. Benny et al. Phys. Rev. B 86, 085306 (2012), PhD de Santis

Nano-Structures

Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades

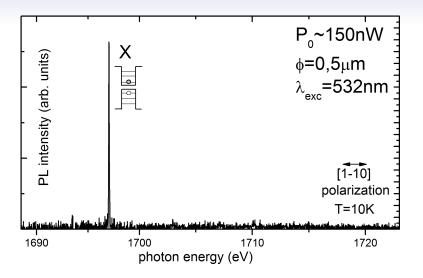

Y. Benny et al.Phys. Rev. B 86, 085306 (2012), PhD de Santis

Nano-Structures


Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades

Y. Benny et al. Phys. Rev. B 86, 085306 (2012), PhD de Santis

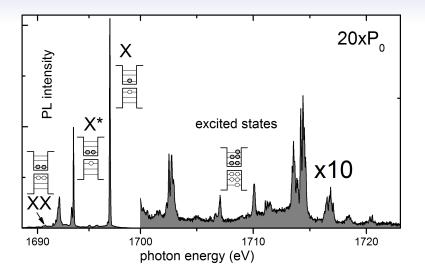
Typical exciton complexes in a semiconductor QD Neutral excitons, biexcitons, trions, radiative cascades


Y. Benny et al. Phys. Rev. B 86, 085306 (2012), PhD de Santis

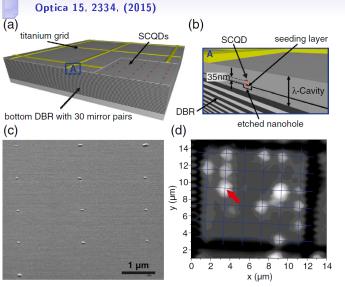
15

Nano-Structures

Typical photoluminescence

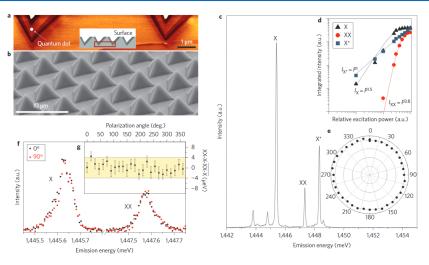

Semiconductors

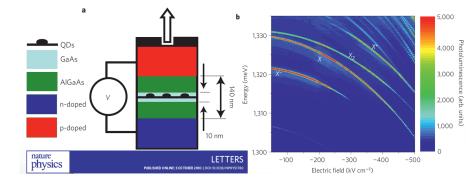
Nano-scale


Excitons

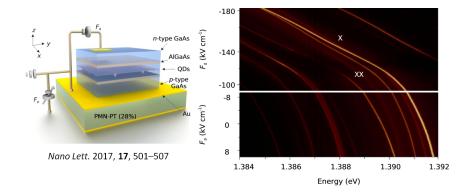
Nano-Structures

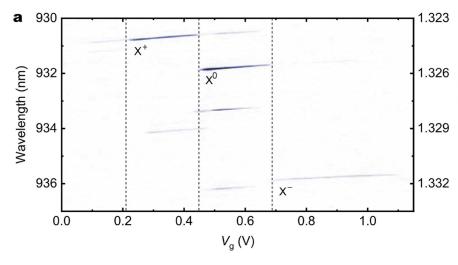
Typical photoluminescence


Site-controlled fabrication of Quantum Dots

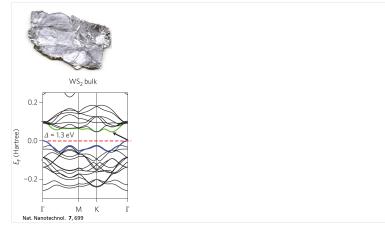

Highly uniform deterministic arrays of pyramidal QDs

LETTERS

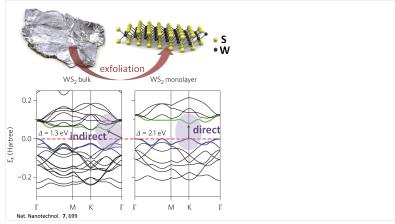

NATURE PHOTONICS DOI: 10.1038/NPHOTON.2013.128


Tuning of exciton transitions in Nanostructures Temperature, strain, magnetic field, electric field via Stark effect

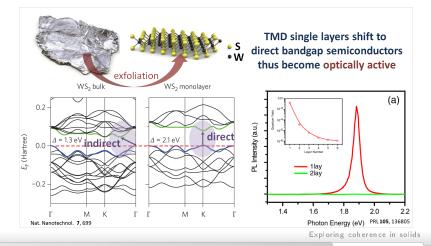
Tuning of exciton transitions in Nanostructures Temperature, strain, magnetic field, electric field via Stark effect



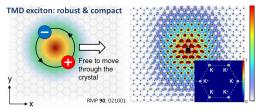
Tuning of exciton transitions in Nanostructures Temperature, strain, magnetic field, electric field via Stark effect


Excitons in Semiconducting TMDs

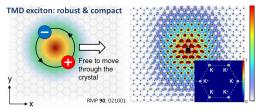
K. F. Mak Phys. Rev. Lett. 105, 136805 (2010): "a crossover to a direct-gap material in the limit of the single monolayer (...) increase in luminescence by 10⁴ compared with the bulk"

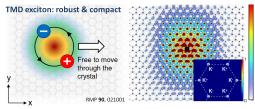

Excitons in Semiconducting TMDs

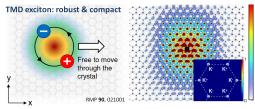
K. F. Mak Phys. Rev. Lett. 105, 136805 (2010): "a crossover to a direct-gap material in the limit of the single monolayer (...) increase in luminescence by 10⁴ compared with the bulk"

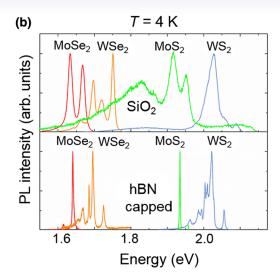


Excitons in Semiconducting TMDs


K. F. Mak Phys. Rev. Lett. 105, 136805 (2010): "a crossover to a direct-gap material in the limit of the single monolayer (...) increase in luminescence by 10⁴ compared with the bulk"

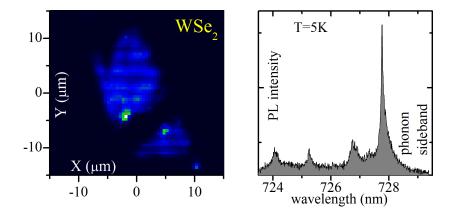

- L. C. Andreani, lectures
- Wannier picture applicable to large extent
- Energy: $E_n(K_{||}) = E_g + E_e + E_h + \frac{\hbar^2 \kappa_{||}^2}{2M} \frac{R^*}{(n-1/2)^2}$, $R^* = \frac{\mu^* e^4}{(2\epsilon^2 \hbar^2)} > 100 \text{ meV}$
- Bohr radius: $a_{2D} = \frac{\epsilon \hbar^2}{(\mu^* e^2)} \simeq 1 \text{ nm (Compact!)}$
- 10% (Strong!) Linear absorption \propto oscillator strength $\propto 1/a_{2D}^2$
- Chiral selection rules $\sigma^{\pm} \leftrightarrows K^{\pm}$


- L. C. Andreani, lectures
- Wannier picture applicable to large extent
- Energy: $E_n(K_{||}) = E_g + E_e + E_h + \frac{\hbar^2 K_{||}^2}{2M} \frac{R^*}{(n-1/2)^2}$, $R^* = \frac{\mu^* e^4}{(2\epsilon^2 \hbar^2)} > 100 \text{ meV}$
- Bohr radius: $a_{2D} = \frac{\epsilon \hbar^2}{(\mu^* e^2)} \simeq 1 \, \text{nm} \, (\text{Compact!})$
- 10% (Strong!) Linear absorption \propto oscillator strength $\propto 1/a_{2D}^2$
- Chiral selection rules $\sigma^{\pm} \leftrightarrows K^{\pm}$


- L. C. Andreani, lectures
- Wannier picture applicable to large extent
- Energy: $E_n(K_{||}) = E_g + E_e + E_h + \frac{\hbar^2 K_{||}^2}{2M} \frac{R^*}{(n-1/2)^2}$, $R^* = \frac{\mu^* e^4}{(2\epsilon^2 \hbar^2)} > 100 \text{ meV}$
- Bohr radius: $a_{2D} = \frac{\epsilon \hbar^2}{(\mu^* e^2)} \simeq 1 \text{ nm (Compact!)}$
- 10% (Strong!) Linear absorption \propto oscillator strength $\propto 1/a_{2D}^2$
- Chiral selection rules $\sigma^{\pm} \leftrightarrows K^{\pm}$

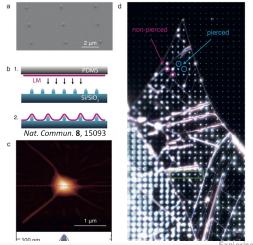
- L. C. Andreani, lectures
- Wannier picture applicable to large extent
- Energy: $E_n(K_{||}) = E_g + E_e + E_h + \frac{\hbar^2 K_{||}^2}{2M} \frac{R^*}{(n-1/2)^2}$, $R^* = \frac{\mu^* e^4}{(2\epsilon^2 \hbar^2)} > 100 \text{ meV}$
- Bohr radius: $a_{2D} = \frac{\epsilon \hbar^2}{(\mu^* e^2)} \simeq 1 \, \text{nm} \, (\text{Compact!})$
- 10% (Strong!) Linear absorption \propto oscillator strength $\propto 1/a_{2D}^2$
- Chiral selection rules $\sigma^{\pm} \leftrightarrows K^{\pm}$

Improving optical quality with heterostructures Flattening, Shielding & Isolating from excess charges \Rightarrow suppressing σ


Improving optical quality with heterostructures Flattening, Shielding & Isolating from excess charges \Rightarrow suppressing σ

Localized quantum emitters in monolayers

Driven by local strain/disorder, ...but on-demand arrays now at hand

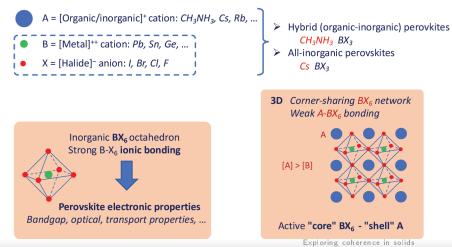

Koperski et al., Nature Nanotech. 10, 503 (2015), arXiv:1609.04244 (!)

Exploring coherence in solids

Localized quantum emitters in monolayers Driven by local strain/disorder, ...but on-demand arrays now at hand

Koperski et al., Nature Nanotech. 10, 503 (2015), arXiv:1609.04244 (!)

Semiconductors

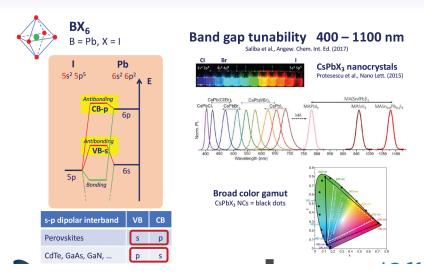

Nano-scale

Excitons

Nano-Structures

Excitons in Perovskites Basic Physical Properties Structure

Halide perovskites ABX₃



Nano-scale

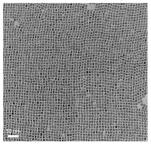
Excitons

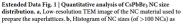
Nano-Structures

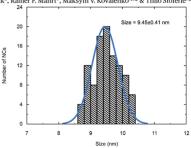
Excitons in Perovskites Basic Physical Properties Structure

Semiconductors

Nano-scale


Excitons


Nano-Structures


Excitons in Perovskites Basic Physical Properties Structure

Superfluorescence from lead halide perovskite quantum dot superlattices

Gabriele Rainol^{1,2,3,5*}, Michael A. Becker^{3,4,5}, Maryna I. Bodnarchuk², Rainer F. Mahrt³, Maksym V. Kovalenko^{1,2*} & Thilo Stöferle^{3*}

obtained from TEM image analysis. The solid line is a fit with a normal distribution, and the given mean size (9.45 nm) and standard deviation (0.41 nm) are obtained from this fit.

Perovskites: "miracle" materials for photovoltaics?

Perovskites

Solar cell desirable features	Benefits
Broad bandgap tunability 400 - 1100 nm	Solar radiation, multi-junction
Direct band gap + absorption $\ge 10^4$ cm ⁻¹	Thin film technology
High photo-generation of free carriers	High Power Conversion Efficiency (I_{sc} , V_{oc})
Low radiative recombination losses	
Carrier diffusion length > absorption depth	
High carrier collection	
Cost-effective growth	Consumer market
Scalability, environmental impact, toxicity	
Lifespan ≥ 25 years	