Microlenses

Coherence in semiconductor nanostructures Part II: Photonic enhancement

Jacek Kasprzak

Equipe mixte CEA-CNRS "Nanophysique et semicondcuteurs" Institut Néel - CNRS Grenoble France

Warsaw University, October-December 2020

Reflection	Cavities	Photonic Wires

1 Problem of a total internal reflection

2 Semiconductor planar and pillar cavities

Microlenses

Outline

Plasmonics

Waveguides

- **3** Photonic Waveguide Antennas
- Deterministic Microlenses
- 5 Ultra-low Volume Plasmonic Cavities
- **6** In-plane semiconductor waveguides

Problem of a total internal reflection

- 2 Semiconductor planar and pillar cavities
- 3 Photonic Waveguide Antennas
- 4 Deterministic Microlenses
- 5 Ultra-low Volume Plasmonic Cavities
- 6 In-plane semiconductor waveguides

How to overcome total internal reflection issue ?

How to overcome total internal reflection issue ?

- 4 Deterministic Microlenses
- 5 Ultra-low Volume Plasmonic Cavities
- **6** In-plane semiconductor waveguides

Cavities

How to fabricate a microcavity? Figure of Merit \Rightarrow Quality factor, $Q = \lambda/\delta\lambda$

Advantage: intra-cavity field cycling, Drawback: Narrow-band

Cavities

How to fabricate a microcavity? Figure of Merit \Rightarrow Quality factor, $Q = \lambda/\delta\lambda$

Advantage: intra-cavity field cycling, Drawback: Narrow-band

How to fabricate a microcavity? Figure of Merit \Rightarrow Quality factor, $Q = \lambda/\delta\lambda$

Yoshie et al., Nature 432, 200 (2004)

Advantage: intra-cavity field cycling, Drawback: Narrow-band

Photonic Wires

Microlenses

Plasmonics

Waveguides

$\begin{array}{c} \textbf{Pillar microcavity}\\ \textbf{Quality factors typically from 10 to 10^{5}} \end{array}$

$\begin{array}{c} \textbf{Pillar microcavity}\\ \textbf{Quality factors typically from 10 to 10^{5}} \end{array}$

$\begin{array}{c} \textbf{Pillar microcavity}\\ \textbf{Quality factors typically from 10 to 10^{5}} \end{array}$

Photonic Wires

Microlenses

Plasmonics

Waveguides

$\begin{array}{c} \mbox{Pillar microcavity} \\ \mbox{Quality factors typically from 10 to 10^5} \end{array}$

(a)

(b)

Figure 1.10 – Scanning Electron Microscope images. (a) First generation of deterministically coupled QD-micropillar sample. (b) Second generation of devices, including electrical control.

State of the art: Open Cavity Q-factor reaching 10⁶ + fully tunable in space and frequency + charge tunable quantum emitter

Nature 575, 622 (2019)

Photonic Wires

Microlenses

Plasmonics

Waveguides

Signal waveguiding in photonic nanowires Field enhancement around a QD + 45% extraction, broadband, Top-Down

NATURE PHOTONICS DOI: 10.1038/NPHOTON.2009.287

Photonic Wires

Microlenses

Plasmonics

Waveguides

Signal waveguiding in photonic InP nanowires Bottom-Up, Tailored Antennas

- Deterministic Microlenses
- 5 Ultra-low Volume Plasmonic Cavities
- 6 In-plane semiconductor waveguides

Photonic Wires

Plasmonics

Waveguides

Deterministic Quantum Dot Microlenses Enhanced photon-extraction efficiency

- 5 Ultra-low Volume Plasmonic Cavities
- 6 In-plane semiconductor waveguides

Microlenses

Plasmonics

Waveguides

Ultra-low Mode-Volume Plasmonic Cavities $V = 7 \times 10^{-3} (\lambda/n)^3$, $Q = 10^5 \Rightarrow Q/V = 1.4 \times 10^7$

Microlenses

Plasmonics

Waveguides

Ultra-low Mode-Volume Plasmonic Cavities $V = 7 \times 10^{-3} (\lambda/n)^3$, $Q = 10^5 \Rightarrow Q/V = 1.4 \times 10^7$

Hu et al., Sci. Adv. 2018;4: eaat2355

	Reflection	Cavities P	hotonic Wires	Microlenses	Plasmonics	(Waveguides)				
	Outline									
Problem of a total internal reflection										
	2 Semiconductor planar and pillar cavities									
	3 Photo	onic Waveg	guide Antenna	as						

- 4 Deterministic Microlenses
- 5 Ultra-low Volume Plasmonic Cavities
- **6** In-plane semiconductor waveguides

 Reflection
 Cavities
 Photonic Wires
 Microlenses
 Plasmonics
 Waveguides

 Waveguides:
 ridges, photonic crystals, nanophotonics
 In-plane guiding of light in photonic circuits
 In photonic circuits

Reflection Cavities Photonic Wires Microlenses Plasmonics Waveguides Waveguides: ridges, photonic crystals, nanophotonics

In-plane guiding of light in photonic circuits

