Coherence in semiconductor nanostructures Part III: Spontaneous collective coherence & superradiance in ensembles of excitons & polaritons

Jacek Kasprzak

Equipe mixte CEA-CNRS "Nanophysique et semicondcuteurs" Institut Néel - CNRS Grenoble France

Warsaw University, October-December 2020

1 Condensation Phenomenon

- 2 Why Polariton Condensation ?
- **3** Demonstration of the Polariton Condensation
 - Massive Occupation (N,T)
 - Thermalization
 - Long Range Spatial Coherence

4 Discussion

- Single State
- Quantum State

Conclusion

Beyond

Condensation Phenomenon Idea, 1924: The theory is pretty, but is there also some truth to it?

 Boson Statistics at High Density in Thermal Equilibrium

- Massive Occupation of the Ground State
- Saturation of the Excited States

Beyond

Condensation Phenomenon Idea, 1924: The theory is pretty, but is there also some truth to it?

Beyond

Condensation Phenomenon Idea, 1924: The theory is pretty, but is there also some truth to it?

 $\lambda_{dB} \propto (m \cdot T)^{-1/2}$ Boson Statistics at Ε High Density in Thermal Equilibrium Saturation of the Excited Exploring coherence in solids

Beyond

Condensation Phenomenon Idea, 1924: The theory is pretty, but is there also some truth to it?

 Boson Statistics at High Density in Thermal Equilibrium

- Massive Occupation of the Ground State
- Saturation of the Excited States

Exploring coherence in solids

3

Beyond

Condensation Phenomenon Idea, 1924: The theory is pretty, but is there also some truth to it?

 Boson Statistics at High Density in Thermal Equilibrium

- Massive Occupation of the Ground State
- Saturation of the Excited States

3

Bose-Einstein Condensation First Achievement: Boulder, MIT - 1995

- Atoms: $(T_c, N_c) \sim (10^{-7} K, 10^8 cm^{-2})$
- Polaritons: \sim (20K, 5x10⁸ cm⁻²)
- $_{\bullet}~m_{Polariton} \sim 10^{\text{-8}} m_{Atom}$

Bose-Einstein Condensation First Achievement: Boulder, MIT - 1995

- Atoms: $(T_c, N_c) \sim (10^{-7} K, 10^8 cm^{-2})$
- Polaritons: \sim (20K, 5x10⁸ cm⁻²)
- $m_{Polariton} \sim 10^{-8} m_{Atom}$

Bose-Einstein Condensation First Achievement: Boulder, MIT - 1995

- Atoms: $(T_c, N_c) \sim (10^{-7} K, 10^8 cm^{-2})$
- Polaritons: $\sim (20K, 5x10^8 cm^{-2})$
- $_{\bullet}~m_{Polariton} \sim 10^{\text{-8}} m_{Atom}$

Bose-Einstein Condensation First Achievement: Boulder, MIT - 1995

- Atoms: $(T_c, N_c) \sim (10^{-7} K, 10^8 cm^{-2})$
- Polaritons: $\sim (20K, 5x10^8 cm^{-2})$
- $m_{Polariton} \sim 10^{\text{-8}} m_{Atom}$

- Single State
- Quantum State

Beyond

What is an Exciton Polariton ?

Discussion

C

Beyond

Digression: Polaritons in a tunable cavity with TMDs

M. Król et al.2D Materials 7, 015006 (2020)

 $a_B \simeq 1 \text{ nm} \Rightarrow \text{Suitable for a BEC}$

Digression: Polaritons in a tunable cavity with TMDs

M. Król et al.2D Materials 7, 015006 (2020)

$a_B \simeq 1 \, \text{nm} \Rightarrow$ Suitable for a BEC ?

Results

Discussion

Conclusions

Beyond

Polariton versus Atom

${\sf Polariton} {\approx} {\sf Boson}$

$N \ll N_{sat} \sim 10^{11} cm^{-2}$

Parameter	Atom	Polariton
• m [m _e]	• 10 ⁴	● 10 ⁻⁴
• T [K]	• 10 ⁻⁶	• 20
• $\lambda_{dB} \sim$ a [μ m]	• 0.7	• 3
• N [cm ⁻²]	• 10 ⁸	• $5 \cdot 10^8$ (10 ¹⁰)
• Life Time	• "long" <i>s</i>	• "very short" 10 ⁻¹² s
Thermalization	Oui	???

Results

Discussion

Conclusions

Beyond

Polariton versus Atom

${\sf Polariton} {\approx} {\sf Boson}$

$N \ll N_{sat} \sim 10^{11} cm^{-2}$

Parameter	Atom	Polariton
• m [m _e]	• 10 ⁴	• 10 ⁻⁴
• T [K]	• 10 ⁻⁶	• 20
• $\lambda_{dB} \sim$ a $[\mu m]$	• 0.7	• 3
• N [cm ⁻²]	• 10 ⁸	• $5 \cdot 10^8$ (10 ¹⁰)
• Life Time	• "long" <i>s</i>	• "very short" $10^{-12}s$
Thermalization	Oui	???
• Life Time Thermalization	• "long" <i>s</i> Oui	• "very short" 10 ⁻¹² s

Results

Discussion

Conclusions

Beyond

Polariton versus Atom

${\sf Polariton} {\approx} {\sf Boson}$

$N \ll N_{sat} \sim 10^{11} cm^{-2}$

Parameter	Atom	Polariton
• m [m _e]	• 10 ⁴	• 10 ⁻⁴
• <i>T</i> [K]	• 10 ⁻⁶	• 20
• $\lambda_{dB} \sim$ a [μ m]	• 0.7	• 3
• N [cm ⁻²]	• 10 ⁸	• $5 \cdot 10^8$ (10 ¹⁰)
• Life Time	• "long" <i>s</i>	 "very short" 10⁻¹²s
Thormalization		222
Thermalization	Uui	""

Exploring coherence in solids

GaAs Microcavity with a single QW

S. Jiang et al. APL 73, 3031, 1998

Exciton dissociation before condensation

GaAs Microcavity with a single QW

S. Jiang et al. APL 73, 3031, 1998

Exciton dissociation before condensation

GaAs Microcavity with 6 QWs

R. Butté et al. PRB 65, 205310, 2002

Exciton dissociation before condensation

GaAs Microcavity with 6 QWs

R. Butté et al. PRB 65, 205310, 2002

Exciton dissociation before condensation

GaAs Microcavity with 12 QWs

H. Deng et al. Science, 298, 199, 2002

Stimulated scattering in strong coupling

Coherence ?? Non-resonant ??

GaAs Microcavity with 12 QWs

H. Deng et al. Science, 298, 199, 2002

Stimulated scattering in strong coupling

Coherence ?? Non-resonant ??

Why polaritons ?

Optical Response of the CdTe Microcavity $16PQs \Rightarrow \Omega = 26 \text{ meV}$

Exploring coherence in solids

Why polaritons ?

Beyond

Optical Response of the CdTe Microcavity $16PQs \Rightarrow \Omega = 26meV$

Results

Why polaritons ?

Optical Response of the CdTe Microcavity Non-resonant Excitation

Discussion

Conclusions

Beyond

Polariton Condensation in Momentum space Far Field Imaging

Discussion

Conclusions

Beyond

Polariton Condensation in Momentum space Far Field Imaging

Exploring coherence in solids

2 Why Polariton Condensation ?

Optimization of the Polariton Condensation

- Massive Occupation (N,T)
- Thermalization
- Long Range Spatial Coherence

4 Discussion

- Single State
- Quantum State

4 Discussion

- Single State
- Quantum State

19

Discussion

Beyond

Polariton Condensation in Momentum Plane Non-resonant, CW Excitation

Why polaritons ? Results Discussion Conclusions Polariton Condensation in Momentum Plane Non-resonant, CW Excitation Non-resonant Non-resonant

BEC

Beyond

Polariton Condensation in Dispersion Plane Spectrally Resolved Far Field Imaging

Beyond

Polariton Condensation in Dispersion Plane Spectrally Resolved Far Field Imaging

Polariton Condensation in Dispersion Plane Non-resonant, CW Excitation

21

Saturation of the Excited States

Discussion

Conclusion

Beyond

Massive Occupation of the Ground State

Discussion

Conclusions

Beyond

Massive Occupation of the Ground State

Discussior

Conclusion

Beyond

Massive Occupation of the Ground State

Discussion

Conclusion

Beyond

Polariton Condensation in Dispersion Plane Temperature as a Control Parameter $P=const, T_C$ Exists !

24

Beyond

Discussion

Conclusion

Beyond

Polariton Condensation in Dispersion Plane Temperature as a Control Parameter $P=const, T_C$ Exists !

24

Discussion

Conclusions

Beyond

Polariton Condensation in Dispersion Plane Temperature as a Control Parameter $P=const, T_C$ Exists !

24

Internal Temperature of the Polariton Gas ... In from the cold: $T_{C \ Polariton} \simeq 100\ 000\ 000x\ T_{C \ Atom}$ Critical Density: $N_{C \ Polariton} \simeq 5 \times 10^8 \ cm^{-2}$

Condensation in Real Space

Condensation in Real Space

Spatial Localization by the Photonic Disorder

Long Range Spatial Coherence

M. Richard et al. PRB 72, 201301(R), 2005

Mutual Coherence Between Localized Spots

Long Range Spatial Coherence

M. Richard et al. PRB 72, 201301(R), 2005

Mutual Coherence Between Localized Spots

Beyond

Long Range Spatial Coherence Interference over the Entire Excitation Spot

Long Range Spatial Coherence Probing of the Phase...

Long Range Spatial Coherence

Long Range Spatial Coherence

Demonstration of the Polariton Condensation

- Massive Occupation (N,T)
- Thermalization
- Long Range Spatial Coherence

4 Discussion

- Single State
- Quantum State

4 Discussion

- Single State
- Quantum State

Conclusion

Beyond

Condensation into the Single State ??

Stationary Interference Pattern !!

Conclusions

Beyond

Condensation into the Single State ?? Stationary Interference Pattern !!

Conclusions

Beyond

Condensation into the Single State ??

Homogenous Linear Polarization

Conclusion

Beyond

Condensation into the Single State ??

- Single State
- Quantum State

Exploring coherence in solids

Beyond

Exploring coherence in solids

Beyond

BEC

Exploring coherence in solids

Beyond

Results

Conclusions

Beyond

Intensity Correlation Experimental Setup

Conclusion

Beyond

Intensity Correlation Reduction of the Bunching

Build up of the Second Order Coherence

Results

Conclusio

Beyond

Intensity Correlation

- Thermalization $T_{eff} = (16 20)K$
- Massive Occupation of the Ground State
- Saturation of the Excited States
- Long Range Spatial Coherence
- Homogenous, Linear Polarization of the Condensate
- Transition: Thermal ⇒ Coherent State

Realization of the Polariton Condensation

- Thermalization $T_{eff} = (16 20)K$
- Massive Occupation of the Ground State
- Saturation of the Excited States
- Long Range Spatial Coherence
- Homogenous, Linear Polarization of the Condensate
- Transition: Thermal ⇒ Coherent State

Conclusio

Beyond

Alternatives for spontaneous coherence in solids Indirect excitons in coupled quantum wells

Exploring coherence in solids

Conclusio

Beyond

Alternatives for spontaneous coherence in solids Indirect excitons in coupled quantum wells

Exploring coherence in solids

Conclusio

Beyond

Alternatives for spontaneous coherence in solids Excitons in a 25 nm GaAs QW in a field-effect device: electrons and holes are spatially separated

Evidence for a BEC of excitons at 500 mK, EPL (2014) Exciton gas in spatial traps, linear polarization, spatial coherence

Conclu

Beyond

Alternatives for spontaneous coherence in solids

Superradiance \Rightarrow spontaneous and self-organized build up of coherent radiation within an ensemble of quasi-degenerate emitters [M. Gross and S. Haroche, Physics Reports 93, 301 (1982)]. It was first noted by R. Dicke back in 1954 [Phys. Rev. 93, 99 (1954)] that, with increasing their density, the collection of N emitters starts to radiate much faster and stronger comparing to spontaneous emission of individuals or their diluted ensemble. More precisely, when packing up N identical emitters into a volume of size much smaller than the radiation wavelength, instead of observing isotropic and exponentially decaying emission, one produces a fierce, directional radiation blast, having a lagged peak intensity scaling like N² and N-times reduced duration with respect to the spontaneous emission.

Alternatives for spontaneous coherence in solids Superradiance in Solids, J. Kono JOSAB (2016)

Alternatives for spontaneous coherence in solids Superradiance in Solids, J. Kono JOSAB (2016)

Exploring coherence in solids

Conclusion

Alternatives for spontaneous coherence in solids Superradiance in Solids: most convincing examples

nature physics

PUBLISHED ONLINE: 29 JANUARY 2012 | DOI: 10.1038/NPHYS2207

Giant superfluorescent bursts from a semiconductor magneto-plasma

G. Timothy Noe II¹, Ji-Hee Kim¹, Jinho Lee², Yongrui Wang³, Aleksander K. Wójcik³, Stephen A. McGill⁴, David H. Reitze², Alexey A. Belyanin³ and Junichiro Kono^{1*}

LETTER

Discussion

Conclusio

Beyond

Alternatives for spontaneous coherence in solids Superradiance in Solids: most convincing examples

Superfluorescence from lead halide perovskite quantum dot superlattices

Gabriele Raino^{1,2,3,5*}, Michael A. Becker^{3,4,5}, Maryna I. Bodnarchuk², Rainer F. Mahrt³, Maksym V. Kovalenko^{1,2*} & Thilo Stöferle^{3*}

Outline

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

6 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Plan

5 Appendix

Experimental Setup

- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Imaging Excitation - Ti:Sapphire, CW

$\begin{array}{c} \textbf{Excitation} \\ \texttt{"Top Hat" Spot} \sim 30 \mu m \end{array}$

Imaging Near Field: Sample Image - $f_1 = 9mm$, N.A. = 0.4

▲ Far Field

Imaging Far Field: Fourier Plane Image

I Far Field

Appendix

Plan

5 Appendix

Experimental Setup

Transition Characteristics

- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Polariton Condensation in Momentum Space Threshold, Linewidth, Blueshift, Statistics

Polariton Condensation in Momentum Space Threshold, Linewidth, Blueshift, Statistics

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics

• Non-Equilibrium Polariton Condensation

- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

How to get Thermalization ?? Role of Detuning

How to get Thermalization ?? Role of Detuning

$\begin{array}{l} \textbf{Positive Detuning} \\ \textbf{Shallower Trap, High X Fraction} \Rightarrow \textbf{Enhanced Relaxation} \end{array}$

$\begin{array}{l} \textbf{Positive Detuning} \\ \textbf{Shallower Trap, High X Fraction} \Rightarrow \textbf{Enhanced Relaxation} \end{array}$

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation

• Influence of the reservoir on the ground state

- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Appendix

Influence of the reservoir on the ground state

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state

• Depletion of the Condensate ?

- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States
Depletion of the Condensate ??

Depletion of the Condensate ??

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?

Dispersion Flattening

- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening

Saturation of the excited states

- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

_ ____

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

(x, λ) -measurements

(x, λ) -measurements

(x, λ) -measurements

(x, λ) -measurements Desorder visible below threshold

Detuning dependence

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More

Linear Polarization Build-up

- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Linear Polarization Build-up

Emission Structure vs. Power vs. Polarization

Linear Polarization Probing

Spontaneous Build-up of Linear Polarization

Spontaneous Build-up of Linear Polarization

Origin of the Linear Polarization Ground State Splitting

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up

Coherence More

- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Temporal Coherence

Spatial Coherence Interference Between Different Spots

Spatial Coherence Interference Between Different Spots

Exploring coherence in solids

Appendix

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More

• g2

- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Nonequilibrium Polariton Condensation Non-resonant, Pulsed Excitation

Nonequilibrium Polariton Condensation Non-resonant, Pulsed Excitation

Transition Characteristics Threshold, Line Width

What Can We Learn From the Photon Statistics

What Can We Learn From the Photon Statistics

What Can We Learn From the Photon Statistics

What Can We Learn From the Photon Statistics

Intensity Correlation Experiment

Laser Check

What Do We Expect ? Characteristic Timescales

P/P _{thr}	Decay Time [ps]	Coherence Time [ps]	Expected Bunching
• < 1	• 100-200	• 1-2	• 1%
• (1,2)	• 7	• 5-7	 No Bunching
• > 2	• 3-7	• 1	● 10 - 30%

What Do We Expect ? Characteristic Timescales

What Do We Expect ? Characteristic Timescales

What Do We Expect ? Characteristic Timescales

P/P _{thr}	Decay Time [ps]	Coherence Time [ps]	Expected Bunching
• < 1	• 100-200	• 1-2	• 1%
• (1,2)	• 7	• 5-7	 No Bunching
• > 2	• 3-7	• 1	 ■ 10 - 30%

Result - $g_2(\tau = 0)$ Values Below Threshold

Result - $g_2(\tau = 0)$ Values At Threshold

Summary $\delta \approx +2meV$, T=5.4K, Counting Rate $\sim 3 \cdot 10^5 \frac{c}{s}$, Pulsed, Non-Resonant

 $\begin{array}{c} \textbf{Summary} \\ g_2(\tau=0) \text{ Corrected} \end{array}$

Relaxation Exploring coherence in solids

 $\begin{array}{c} \textbf{Summary} \\ g_2(\tau=0) \text{ Corrected} \end{array}$

Interpretation

$P/P_{thr} < 1$ - Thermal Source

 $1 < P/P_{thr} < 2$ - Coherent Source

$P/P_{thr} > 2$ - Decoherence - Interaction Within the Condensate

Speed Up of the Relaxation M. Müller Thesis - Grenoble 2000

Speed Up of the Relaxation

How About the Other Results ?

CW Measurements

CW Measurements Reduction of bunching \Leftrightarrow Build up of the 2^{*nd*} Order Coherence

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2

High Temperature Limit

- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Polariton Condensation in CdTe Microcavities High Temperature Limit - $T_{cryo} = 50K$

Transition Towards Weak Coupling Regime $T_{cryo} = 106 K$

Transition Towards Weak Coupling Regime $T_{cryo} = 106 K$

Transition Towards Weak Coupling Regime $T_{cryo} = 5K$

Polariton Lasing versus Photon Lasing

High excitation

Polariton Lasing versus Photon Lasing

Polariton Lasing versus Photon Lasing

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Strong coupling at room temperature Nonlinearities not observed

Strong coupling at room temperature Nonlinearities not observed

Strong coupling at room temperature Nonlinearities not observed

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Threshold vs. Number of QWs

Plan

5 Appendix

- Experimental Setup
- Transition Characteristics
- Non-Equilibrium Polariton Condensation
- Influence of the reservoir on the ground state
- Depletion of the Condensate ?
- Dispersion Flattening
- Saturation of the excited states
- Real Space More
- Linear Polarization Build-up
- Coherence More
- g2
- High Temperature Limit
- Polaritons at room temperature
- Polariton Lasing vs. Photon Lasing (VCSEL)
- Stimulation on the Ring of States

Stimulation on the Ring of Excited States Spot Size $\sim 3\mu m$ - Strong Localization

Stimulation on the Ring of Excited States Non-dispersive Bar-Geometrical Artefact

Stimulation on the Ring of Excited States Speckled Emission Above Threshold

Stimulation on the Ring of Excited States Transverse Field Interferometer - Principle

Stimulation on the Ring of Excited States Transverse Field Interferometer - Principle

Stimulation on the Ring of Excited States Billet Interferometer - Zone of the Overlap

Build-up of Coherence - Further Proofs Interference Pattern

Appendix

Build-up of Coherence - Further Proofs Enhancement of Contrast ×4

Stimulation on the Ring of Excited States Spotsize Dependence, explained in Phys. Rev. B 77, 115340 (2008)

