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Basics

Linear Response
Polarization oc EM field

@ A solution of Maxwell's equations:
g(r, t) = ce’®1 4 cc. (1)

@ Induced macroscopic polarization:
P(r,t) = x(r, t)e(r, t) (2)

@ x(r,t): first-order susceptibility = response of the matter to an
electromagnetic field.

@ The dielectric function € and the complex refractive index n are
related to it by:

e(r,t) = eo(1+x(r. 1)), n=+/1+x(r, t) (3)

Absorption, Reflectance
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Optical Nonlinear Phenomena

Induced polarization P scales with the 2nd, 3rd, ...M-th power
of the impinging field £
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optical retrification phase modulation/conjugation|generation of continuum

parametric scattering optical solitons

n-photon absorption
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Optical Nonlinear Phenomena
Induced polarization P scales with the 2nd, 3rd, ...M-th power
of the impinging field £
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FIG. 1. A direct reproduction of the first plate in which there was an indication of second harmonic. The
wavelength scale is in units of 100 A. The arrow at 3472 A indicates the small but dense image produced by the
second harmonic. The image of the primary beam at 6943 A is very large due to halation,
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Harmonic Generation in MoS,
Multi-photon microscope: exciting Aw, detecting 2hw, 3hw, 5hw

@ A. Sdynétjoki et al.Nature Communications 8, 893 (2017)
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Fig. 3 Multiphoton images of MoS; flakes. a SHG and b THG map of the

flakes in Fig. Ta. ¢ Optical spectrum of the nonlinear signal from 1L-MoS,

Fig. 2 Schematic diagram of multiphoton microscope. MLL, linearly with a peak irradiance -30 GW cm ™
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Multi-photon microscope: exciting Aw, detecting 2hw, 3hw, 5hw

Relevance of FWM

Harmonic Generation in MoS,

@ A. Sdynétjoki et al.Nature Communications 8, 893 (2017)
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Harmonic Generation in MoS,
Multi-photon microscope: exciting Aw, detecting 2hw, 3hw, 5hw

@ A. Sdynétjoki et al.Nature Communications 8, 893 (2017)
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Fig. 6 Optical and multiphoton images of few-layer MoS; flake. a Optical micrograph, b SHG, and € THG images of flake with few-layer areas under 1560

nm excitation

High-resolution imaging via multi-photon microscopy J
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High-Harmonic Generation in MoS,
Femto-second excitation: exciting fw = 0.3 eV, detecting up to 13hw

[3 H. Liu et al.Nature Physics 13, 262 (2017)
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Frequency-tuned Second Harmonic Generation
Level structure of excited states in WSe, monolayer

[ G.Wang et al. Phys. Rev. Lett. 114, 197403 (2015)
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Toward the four-wave mixing
@ In case of pair of fields: e(r, t) = e1(r1, t) + £2(r2, t — 7), one has:
PN o gargrbrgdz xba (4)
@ For N =(0,1,2,0), the resulting 3rd order polarization is:

P3) ox RO)(ws, t)etedeilkartwt) gi(kertwat) o
6T&.%e%»l'[(zkz7'(;|_)I‘~|>(2(.«)27(4)1)i‘], (5)

@ Such P®) propagates onto the 2k, — k; direction and oscillates at
2wy — w1 frequency,
and is called degenerate four-wave mixing or FWM.

HSI
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Why it is worth to look into FWMwx £EE, ?

Because it offers an access to homogeneous dephasing time Ty = 2h/7y
in the presence of spectral inhomogeneous broadening o
via formation of a photon echo

Phase 4 -
P(l) o elu/,le t/T,
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Phase 4 |P(1) o ei(g},e,,;fl| |P(3) o e—mjz emf (t—r)'{;/rZ |

phase conjugation

A A A

0 t 2t time, t

Rephasing of all polarizations at t = 27 =

FWM is only sensitive to microscopic dephasing, independent of o.
o is inferred through the time-spread of the echo.
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Why it is worth to look into FWMwx £EE, ?

Because it offers an access to homogeneous dephasing time Ty = 2h/7y
in the presence of spectral inhomogeneous broadening o
via formation of a photon echo

>
Photon echoes from two-dimensional §
excitonsin GaAs-AlGaAs quantum wells £
oo
L. Schultheis® and M. D. Sturge J. Hegarty 5
=
Appl. Phys. Lett. 47 (9), 1 November 1985 %
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Rephasing of all polarizations at t = 27 =

FWM is only sensitive to microscopic dephasing, independent of o.
o is inferred through the time-spread of the echo.
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Relevance of FWM

How to measure FWM ?
Issues: 1.spatial averaging, 2. fails for nano-objects like single excitons

%

Creation of the polarization
along direction K,

~ei(k1X-(v)t)e-t/T2

T, — dephasing time

\

X t=0
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How to measure FWM ?
Issues: 1.spatial averaging, 2. fails for nano-objects like single excitons

Creation of the density grating

~cos[(K,K, )X]-e-(tm2)T2
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How to measure FWM ?
Issues: 1.spatial averaging, 2. fails for nano-objects like single excitons

Send Kk,
onto the density grating




How to measure FWM ?

Issues: 1.spatial averaging, 2. fails for nano-objects like single excitons

FWM K +k,-k,

Diffration of k;
on the density grating
Eqwn in direction k;+k,-k,
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How to measure FWM ?
Issues: 1.spatial averaging, 2. fails for nano-objects like single excitons

FWM K, +k,-k,

diffraction of k,
by the density grating
created by k, and k,

FWM(7,) =

coherence dynamics,
dephasing time
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7?7 How to extract FWM of a localized state ?
Microscopy required = colinear arrangement of &; 5 3 =
Optical Heterodyning
Erwwm o exple(kpwmx — wrwt)]

distinct by directions - k —> W - distinct in frequency
spatial homogeneity - X = t- temporal invariance

13
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? How to extract FWM of a localized state 7
Microscopy required = colinear arrangement of &; 5 3 =
Optical Heterodyning

Basics Nonlinear optical responses

Erwm o exp[e(kpwmXx — wrwit)]

distinct by directions - k —> W - distinct in frequency
spatial homogeneity - X = t- temporal invariance

HSI
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7?7 How to extract FWM of a localized state ?
Microscopy required = colinear arrangement of &; 5 3 =
Optical Heterodyning
Erpwwm o exple(kpwmx — wpwit)]

distinct by directions - k —> W - distinct in frequency
spatial homogeneity - X = t- temporal invariance

1

2
/2
VR (/] FWM transient is measured

in real time t, its FT yields
FWM spectrum

Delay 7,, probes
coherence dynamics

T 0 t
Lets explain this sentence

FWM retrieval by spectral interference of the reference field with
the heterodyne beat at the FWM frequency

13
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Heterodyne FWM in 3 equations

@ Pulse train: N delta pulses centered at w with the repetition rate 77

N
E(t) = A(t)e “'+A(t—T)e U HA(t—2r)e 4 =) A(t—nr)e

n=0

@ One needs a proper phase shifter at frequency 0 acting on a pulse train:

N
g(t) _ A(t)e—iwt + A(t _ T)e—i(wH»GT) 4. = e—iwt Z e_ineTA(t _ nT)

n=0

@ Induced FWM response:

R () oc £7 (1)EF(1) = €* 3 AT (6 — nr)e™017e " HUt 3 AZ(4 — mr)e”2imO2T =
o =

e TS AT (6 — nr)AZ(t — nr)e TR0 70T — 0TIt SN An (b — nr)e T ROFWMT
o

n

HSI
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HSI

FWM micro-spectroscopy = optical lock-in

@ W. Langbein et al.Optics Letters 31, 1151 (2006), intensly exploited in

Grenoble
ram || A
,Lt4gf(€2<€3 51 52 83 WS,

N XyZ monolayer
{? A . |scan /
photon echo 4-300 K um

3-beam heterodyne detection & spectral interferometry

Measurement of the exciton polarization and density dynamics
with an enhanced spatio-temporal resolution: (100 fs, 300 nm)

16
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FWM micro-spectroscopy = optical lock-in

@ W. Langbein et al.Optics Letters 31, 1151 (2006), intensly exploited in

Grenoble
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3-beam heterodyne detection & spectral interferometry

Measurement of the exciton polarization and density dynamics
with an enhanced spatio-temporal resolution: (100 fs, 300 nm)

16



HSI

FWM micro-spectroscopy = in practice
Impact of an Acousto-Optic Modulator on relative phases of the
consecutive pulses within a pulse train

controlled phase drift
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Heterodyne FMW

W,

encapsulated

HSI
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Experimental setup
Heterodyne FMW
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Heterodyne FMW
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Detection Scheme
Spectral Interferometry with an AOM

AOM
N
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Detection Scheme
Spectral Interferometry with an AOM

P, contains interference term
2P, p(w, t) = |E[* + | Es|? £ 2R(E, - EJ - e20%) ’

><

Qp

AOM
%
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Detection Scheme
Spectral Interferometry with an AOM

P, contains interference term
2P, p(w, t) = |E[* + | Es|? £ 2R(E, - EJ - e20%) ’

AOM
N e /
\< 0, +Qp
QD
(’Or
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Detection Scheme
Spectral Interferometry with an AOM

P, contains interference term

2P, p(w, t) = |E|? + |Es|? + 2R(E, - E - oY)

AOM
N Phase /
180°

N < CDr'Q'D

Qp \
(’Or

Balanced detection is filtering the signal at Qp

Pp(w) = Pa— Py =2 [ R(E, - Ef - &%) dt

HSI
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Detection Scheme
Signal selection in a mixing AOM

AOM
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Detection Scheme
Signal selection in a mixing AOM

AOM
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@ Probe
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Detection Scheme
Signal selection in a mixing AOM
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Detection Scheme
Signal selection in a mixing AOM

AOM
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Detection Scheme
Balanced detection in a mixing AOM
pump-reference interference

phase-flips
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Exploring coherence in solids
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Detection Scheme
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HSI
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Detection Scheme
Signal retrieval in amplitude and phase

Pp(w) =2 fOT R(E, - EF - XPt)dt jest rzeczywista
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Detection Scheme
Signal retrieval in amplitude and phase

Pp(w) =2 fOT R(E, - EF - XPt)dt jest rzeczywista

L Transformata Fouriera do t

F~1(Pp) zawiera 2 czasowo odwrécone sktadniki
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Detection Scheme
Signal retrieval in amplitude and phase

Pp(w) =2 fOT R(E, - EF - XPt)dt jest rzeczywista

L Transformata Fouriera do t

F~1(Pp) zawiera 2 czasowo odwrécone sktadniki

i Zasada przyczynowosci

Tylko dodatnie czasy sa fizyczne: O(t)[F~1(Pp)]
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Detection Scheme
Signal retrieval in amplitude and phase

Pp(w) =2 fOT R(E, - EF - XPt)dt jest rzeczywista

i FT to t

F~1(Pp) zawiera 2 czasowo odwrécone sktadniki

i Causality Principle

Tylko dodatnie czasy sa fizyczne: O(t)[F~1(Pp)]

i Back FT to w

Esign(w) w amplitudzie i fazie
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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Acousto-Optic Modulators used as frequency shifters
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Photos of the setup
ptic Modulators used as frequency shifters
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters

—~— B

™ Mixing AOM selects
FWM by frequency
downshift by

Exploring coherence in solid
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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Photos of the setup
Acousto-Optic Modulators used as frequency shifters
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