## Coherence in semiconductor nanostructures Part VI: Coherent dynamics and control of single excitons

## Jacek Kasprzak





Equipe mixte CEA-CNRS "Nanophysique et semicondcuteurs" Institut Néel - CNRS Grenoble France

#### Warsaw University, October-December 2020





- 2 Dephasing Mechanisms
- 3 Exciton-Biexciton



## 5 Auxiliary

Rabi

## **Research field** Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < \mathrm{ns}$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{Self-assembled} \text{ } \textbf{QD}$ 

Rabi

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

• Linear response dominated by dielectric function of the bulk

#### • $\tau_c < ns$

- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{ Self-assembled } \textbf{QD}$ 

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

• Linear response dominated by dielectric function of the bulk

#### • $\tau_c < ns$

- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{ Self-assembled } \textbf{QD}$ 

Rabi

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < ns$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{ Self-assembled } \textbf{QD}$ 

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < ns$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk} {\Rightarrow} \mathsf{QWs} {\Rightarrow} \mathsf{Ensemble} \text{ of } \mathsf{QDs} {\Rightarrow} \mathsf{Interface} \text{ } \mathsf{QD} {\Rightarrow} \textbf{ Self-assembled} \text{ } \textbf{QD}$ 

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < ns$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## **Solution**

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{ Self-assembled } \textbf{QD}$ 

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < ns$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk}{\Rightarrow}\mathsf{QWs}{\Rightarrow}\mathsf{Ensemble} \text{ of } \mathsf{QDs}{\Rightarrow}\mathsf{Interface} \text{ } \mathsf{QD}{\Rightarrow} \textbf{Self-assembled} \text{ } \textbf{QD}$ 

## Research field

Coherent dynamics & control of individual transitions in solids

## **Obstacles & Requirements**

- Linear response dominated by dielectric function of the bulk
- $\tau_c < ns$
- Isotropic emission & weak signal from an individual state
- Readout in Phase & Amplitude
- State switching
- Intrinsic small osc. strength

## Solution

- Use non-linear optical response like FWM
- Ultra-Fast spectroscopy
- Heterodyne Detection
- Spectral Interferometry
- Use Multi-Pulse Resonant excitation
- High signal integration rate

 $\mathsf{Bulk} \Rightarrow \mathsf{QWs} \Rightarrow \mathsf{Ensemble} \text{ of } \mathsf{QDs} \Rightarrow \mathsf{Interface} \text{ } \mathsf{QD} \Rightarrow \textbf{Self-assembled} \text{ } \textbf{QD}$ 

Rabi

## Quantum Engineering

Controlling coherence and densities in two-level systems:

 $T_1$ ,  $T_2$ , Rabi, echo, coupling...



- $\bullet\,$  Accessing the Qubit  $\to$  favoring the light-matter coupling
- Avoiding losses & dephasing ightarrow environmental decoupling

Rabi

#### Quantum Engineering Controlling coherence and densities in two-level systems: $T_1$ , $T_2$ , Rabi, echo, coupling...



- $\bullet\,$  Accessing the Qubit  $\to$  favoring the light-matter coupling
- Avoiding losses & dephasing ightarrow environmental decoupling

Rabi

## Quantum Engineering

Controlling coherence and densities in two-level systems:

 $T_1$ ,  $T_2$ , Rabi, echo, coupling...



• Accessing the Qubit  $\rightarrow$  favoring the light-matter coupling

Avoiding losses & dephasing → environmental decoupling

## Quantum Engineering

Controlling coherence and densities in two-level systems:

 $T_1$ ,  $T_2$ , Rabi, echo, coupling...



- $\bullet~$  Accessing the Qubit  $\rightarrow~$  favoring the light-matter coupling
- $\bullet$  Avoiding losses & dephasing  $\rightarrow$  environmental decoupling

Rabi

## Quantum Engineering in Solids

Superconducting circuits, electron and nuclear spins, rare-earths...

## Storing quantum information for 30 seconds in a nanoelectronic device



#### Silicon platform for quantum computation b ultra-low temperatures, *µ*-waves

 $10^2$  Rabi oscillations before any signs of decay,  $10^5$  observable

## A quantum dot exciton Bright, nano-scopic source of quantum light from the solid: Optically driven, fast qubit?





### A quantum dot exciton Bright, nano-scopic source of quantum light from the solid: Optically driven, fast qubit?





## A quantum dot exciton Bright, nano-scopic source of quantum light from the solid: Optically driven, fast qubit?





### A quantum dot exciton Bright, nano-scopic source of quantum light from the solid: Optically driven, fast qubit?





### FWM micro-spectroscopy $\Rightarrow$ optical lock-in

W. Langbein et al.Optics Letters 31, 1151 (2006) intensly developed & exploited in Grenoble



**3-beam heterodyne detection & spectral interferometry** Measurement of the exciton polarization and density dynamics with an enhanced spatio-temporal resolution: (100 fs, 300 nm)

### FWM micro-spectroscopy $\Rightarrow$ optical lock-in

W. Langbein et al.Optics Letters 31, 1151 (2006)

#### intensly developed & exploited in Grenoble



#### FWM micro-spectroscopy $\Rightarrow$ optical lock-in

W. Langbein et al.Optics Letters 31, 1151 (2006)

#### intensly developed & exploited in Grenoble



Quantum Engineering

**Dephasing Mechanisms** 

Exciton-Biexciton

Rabi Auxiliary

#### 



8

# $\begin{array}{l} \mbox{Microscopy} \Rightarrow \mbox{Scanning} \Rightarrow \mbox{Hyperspectral Imaging} \\ \mbox{InAs QDs in a low-Q microcavity} \end{array}$



# $\begin{array}{l} \mbox{Microscopy} \Rightarrow \mbox{Scanning} \Rightarrow \mbox{Hyperspectral Imaging} \\ \mbox{InAs QDs in a low-Q microcavity} \end{array}$



-5

# $\begin{array}{l} \mbox{Microscopy} \Rightarrow \mbox{Scanning} \Rightarrow \mbox{Hyperspectral Imaging} \\ \mbox{InAs QDs in a low-Q microcavity} \end{array}$



Spectacular Signal-to-Noise Improvement by  ${\sim}1000$ 

x (µm)

10

Ò

- intra-cavity field amplification
- spectral matching with the excitation
  - presence of natural micro-lenses





- **2** Dephasing Mechanisms
- 3 Exciton-Biexciton

## 5 Auxiliary

Rabi

### Measuring coherence & population dynamics Radiatively limited dephasing of an InAs QD: $T_2=2T_1$



Exploring coherence in solids

#### Phonon broadening of the zero phonon line Consistent with measurements on ensembles

P. Borri et al. Phys. Rev. B. 71, 115328 (2005)



Rabi

## Deterministic, broadband micro-lenses Density & coherence dynamics, inhomogeneous broadening



## **Deterministic, broadband micro-lenses** Density & coherence dynamics, inhomogeneous broadening



Exploring coherence in solids

## Dephasing during the polaron formation



Exploring coherence in solids

## **Phonon Dephasing:** Always a handicap? A part of exciton coherence leaks with the phonon packet



## **Phonon Dephasing:** Always a handicap? A part of exciton coherence leaks with the phonon packet



Rabi

## **Phonon Dephasing:** Always a handicap? A part of exciton coherence leaks with the phonon packet



## **Phonon Dephasing:** Always a handicap? A part of exciton coherence leaks with the phonon packet


#### Project ⇒ optomechanics inferred via FWM Photonic waveguide as a mechanical resonator

Nat. Commun. 8, 76 (2017), Nat. Nanotechnol. 9, 106 (2013) (collegues)



### **Controlling motion via Four-Wave Mixing** Linking Nonlinear Spectroscopy, Phononics & Optomechanics



## How to induce the motion?

Fine adjust exciton and polaron generation to  $f_{
m M}$ 

#### How to detect it?

Motion  $\Rightarrow$  Varying strain  $\Rightarrow$  More  $\sigma \Rightarrow$  echo narrows down at  $f_{\rm M}$ 

**Required Setup Development** 

Digital heterodyning  $\Rightarrow$  Tuning RF modulation across  $\mathit{f}_{\mathrm{M}}$ 

### **Controlling motion via Four-Wave Mixing** Linking Nonlinear Spectroscopy, Phononics & Optomechanics



How to induce the motion?

Fine adjust exciton and polaron generation to  $f_{
m M}$ 

### How to detect it?

Motion  $\Rightarrow$  Varying strain  $\Rightarrow$  More  $\sigma \Rightarrow$  echo narrows down at  $f_M$ 

#### **Required Setup Development**

Digital heterodyning  $\Rightarrow$  Tuning RF modulation across  $\mathit{f}_{\mathrm{M}}$ 

### **Controlling motion via Four-Wave Mixing** Linking Nonlinear Spectroscopy, Phononics & Optomechanics



How to induce the motion?

Fine adjust exciton and polaron generation to  $f_{
m M}$ 

### How to detect it?

Motion  $\Rightarrow$  Varying strain  $\Rightarrow$  More  $\sigma \Rightarrow$  echo narrows down at  $f_M$ 

### **Required Setup Development**

Digital heterodyning  $\Rightarrow$  Tuning RF modulation across  $\mathit{f}_{\mathrm{M}}$ 

### **Optomechanics of TMD membranes**



### **Challenges:**

- I Fabricating high Q-factor drum-head resonators
- ② Suppressed disorder  $\Rightarrow$  TMD hetero-structures
- Oeterministic generation of single emitters

### **Optomechanics of TMD membranes**



### **Challenges:**

- Isotropy Fabricating high Q-factor drum-head resonators
- 2 Suppressed disorder  $\Rightarrow$  TMD hetero-structures
- 3 Deterministic generation of single emitters

### **Optomechanics of TMD membranes**



### **Challenges:**

- Fabricating high Q-factor drum-head resonators
- **2** Suppressed disorder  $\Rightarrow$  TMD hetero-structures
  - 3 Deterministic generation of single emitters

### **Optomechanics of TMD membranes**



#### **Challenges:**

- Fabricating high Q-factor drum-head resonators
- **2** Suppressed disorder  $\Rightarrow$  TMD hetero-structures
- **③** Deterministic generation of single emitters





- 2 Dephasing Mechanisms
- **3** Exciton-Biexciton



## 5 Auxiliary

Rabi Auxiliary

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



- FWM signal detected on spectrometer
- ▶ polarization along  $X \rightarrow 3$  level system GXB
- $\blacktriangleright$  peaks separated by BBE  $\Delta$

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



- FWM signal detected on spectrometer
- ▶ polarization along  $X \rightarrow 3$  level system GXB
- peaks separated by BBE  $\Delta$
- $\sigma$ -polarization  $\rightarrow X$  and Y are excited
- GX splits by FSS  $\delta$  into GX and GY
- no biexciton signal

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



•  $G\sigma$  signal beats

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



Auxiliary

Rabi

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



 $\blacktriangleright$  varying polarization angle excites superposition of X and Y

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



- $\blacktriangleright$  varying polarization angle excites superposition of X and Y
- strong beating on GXY for equal contributions of X and Y



- $\blacktriangleright$  varying polarization angle excites superposition of X and Y
- strong beating on GXY for equal contributions of X and Y
- no beat on XYB due to small pulse areas

Auxiliary

Rabi

# Coherence dynamics in realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



#### Population dynamics in Realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



extraction: decay rate

# Population dynamics in Realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$



extraction: decay rate + decoherence rate XY

# Population dynamics in Realistic QD system fine-structure splitting $\delta$ & biexciton binding energy $\Delta$











- 2 Dephasing Mechanisms
- 3 Exciton-Biexciton



# 5 Auxiliary





### **Rabi rotations**





Auxiliary

### Rabi rotations





## Rabi rotations



Dephasing Mechanisms

Exciton-Biexciton



Auxiliary

### **Rabi rotations**



















Auxiliary





- 2 Dephasing Mechanisms
- 3 Exciton-Biexciton





Auxiliary

#### Back to linear spectroscopy reflectivity & pump-probe on a single QD



Auxiliary

### FWM versus PL imaging



Auxiliary

### FWM in photonic trumpets



Auxiliary

#### FWM in photonic trumpets


Auxiliary

#### FWM in photonic trumpets



Auxiliary

## FWM in GaAs/AlGaAs QDs



Auxiliary

### FWM in GaAs/AlGaAs QDs



Auxiliary

#### FWM in GaAs/AlGaAs QDs



Quantum Engineering

Dephasing Mechanisms

Rabi

Auxiliary

### FWM in GaAs/AlGaAs QDs



## Single CdTe QDs+Mn in a $\mu$ -cavity exciton coherence in a vicinity of a single fluctuating spin



Rabi (Auxiliary

## Single CdTe QDs+Mn in a $\mu$ -cavity exciton coherence in a vicinity of a single fluctuating spin



( Auxiliary

Rabi

# Single CdTe QDs+Mn in a $\mu$ -cavity exciton coherence in a vicinity of a single fluctuating spin

