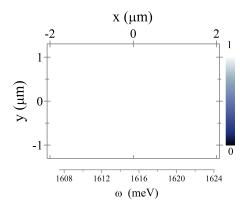
Coherence in semiconductor nanostructures Part VII: Coherent coupling between individual excitons

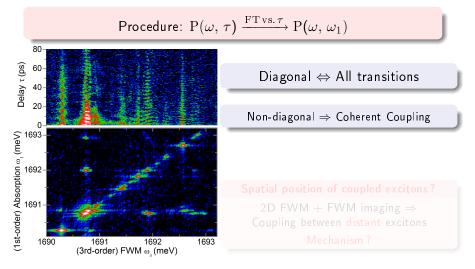
Jacek Kasprzak

Equipe mixte CEA-CNRS "Nanophysique et semicondcuteurs" Institut Néel - CNRS Grenoble France

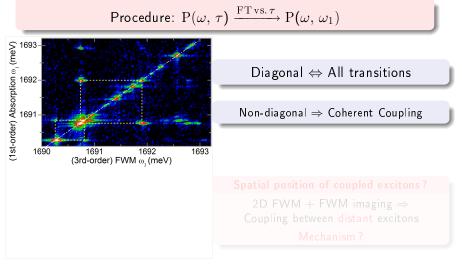
Warsaw University, October-December 2020


Outline

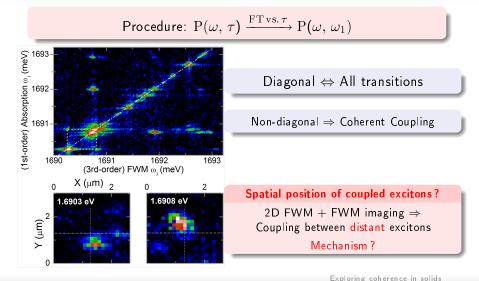
2 Cavity


Mutual coherence in a small set of quantum dots? Four-Wave Mixing hyperspectral imaging

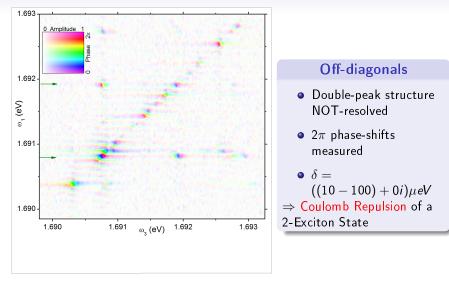
Closely lying QDs in a data cube $(x, y, \omega) \Rightarrow$ Coherent coupling?


Cavity

$2D FWM \Rightarrow a \text{ sensitive probe of coherent coupling}$ Individual excitons loosely bound on disorder in a quantum well

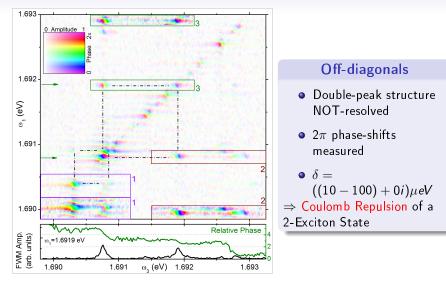

Cavity

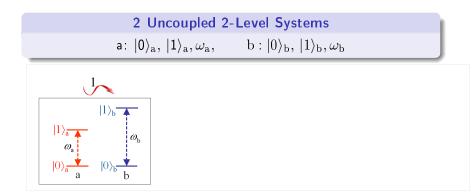
2D FWM \Rightarrow a sensitive probe of coherent coupling Individual excitons loosely bound on disorder in a quantum well

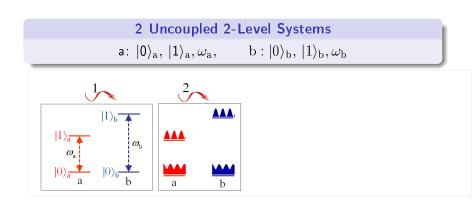


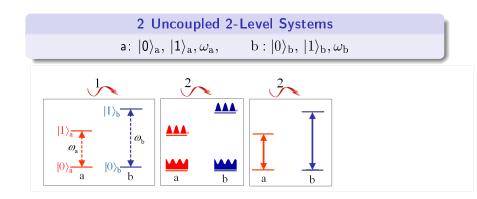
Cavity

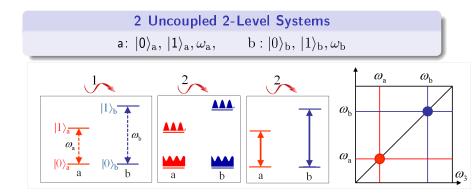
$2D FWM \Rightarrow a \text{ sensitive probe of coherent coupling}$ Individual excitons loosely bound on disorder in a quantum well

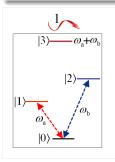


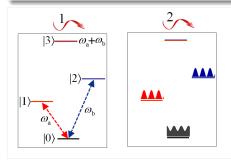

Coulomb Induced Coupling Experimental Verification with a Phase-Resolved 2DFWM

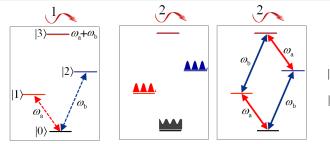


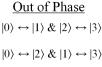

Cavity


Coulomb Induced Coupling Experimental Verification with a Phase-Resolved 2DFWM

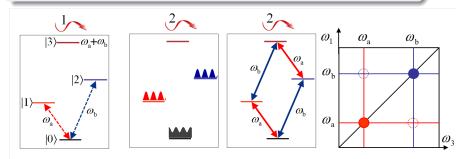




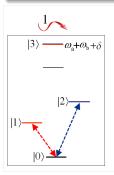

 $\begin{array}{l} \mbox{Coupled 4-Level System, Product States:}\\ |0\rangle = |0\rangle_{\rm b}|0\rangle_{\rm a}, \, |1\rangle = |0\rangle_{\rm b}|1\rangle_{\rm a}, |2\rangle = |1\rangle_{\rm b}|0\rangle_{\rm a}, \, |3\rangle = |1\rangle_{\rm b}|1\rangle_{\rm a} \end{array}$



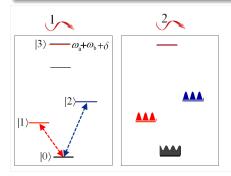
 $\begin{array}{l} \mbox{Coupled 4-Level System, Product States:}\\ |0\rangle = |0\rangle_{\rm b}|0\rangle_{\rm a}, \, |1\rangle = |0\rangle_{\rm b}|1\rangle_{\rm a}, |2\rangle = |1\rangle_{\rm b}|0\rangle_{\rm a}, \, |3\rangle = |1\rangle_{\rm b}|1\rangle_{\rm a} \end{array}$



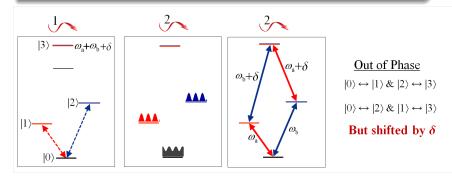
 $\begin{array}{l} \mbox{Coupled 4-Level System, Product States:}\\ |0\rangle = |0\rangle_{\rm b}|0\rangle_{\rm a}, \, |1\rangle = |0\rangle_{\rm b}|1\rangle_{\rm a}, |2\rangle = |1\rangle_{\rm b}|0\rangle_{\rm a}, \, |3\rangle = |1\rangle_{\rm b}|1\rangle_{\rm a} \end{array}$



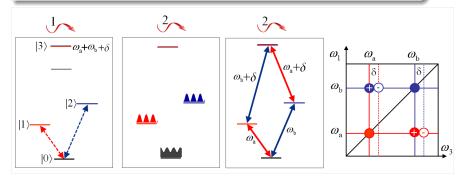
 $\begin{array}{l} \mbox{Coupled 4-Level System, Product States:}\\ |0\rangle = |0\rangle_{\rm b}|0\rangle_{\rm a}, \, |1\rangle = |0\rangle_{\rm b}|1\rangle_{\rm a}, |2\rangle = |1\rangle_{\rm b}|0\rangle_{\rm a}, \, |3\rangle = |1\rangle_{\rm b}|1\rangle_{\rm a} \end{array}$


Lift of Spectral Degeneracy

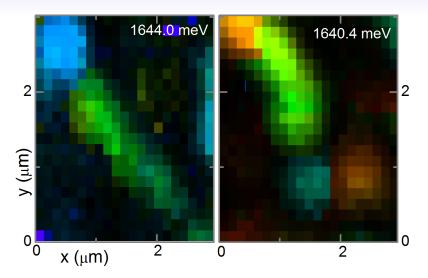
Coulomb Repulsion δ in a 2-Exciton state $|3\rangle$


Lift of Spectral Degeneracy

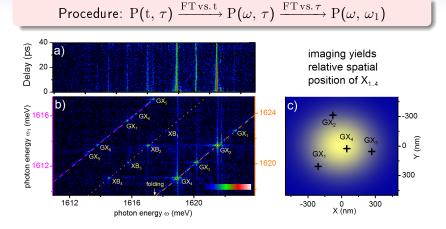
Coulomb Repulsion δ in a 2-Exciton state $|3\rangle$



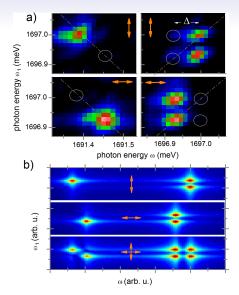
Coulomb Repulsion δ in a 2-Exciton state $|3\rangle$



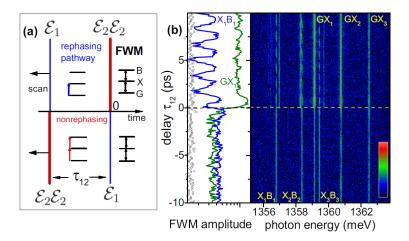
Coulomb Repulsion δ in a 2-Exciton state $|3\rangle$



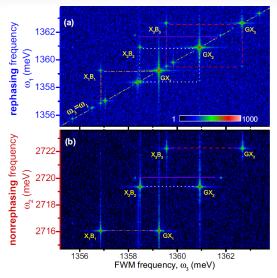
How to couple single excitons over $1 \mu m$? Formation of QW polaritons \Rightarrow Extended natural coupling channels


Cavity

2D FWM \Rightarrow a sensitive probe of coherent coupling

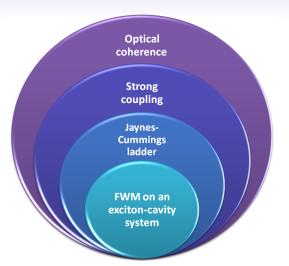


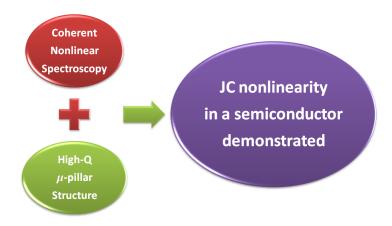
 $\label{eq:general} \begin{array}{l} \mbox{diagonal} \Rightarrow \mbox{all transitions, off-diagonal} \Rightarrow \mbox{coherent coupling,} \\ FWM \ \mbox{imaging} \Rightarrow \mbox{relative position} \end{array}$


Coherent coupling within a fine structure-split exciton

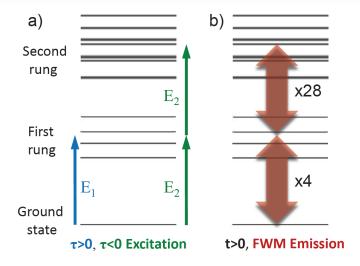
Coherent coupling Single- versus double-quantum coherence

Coherent coupling Single- versus double-quantum coherence

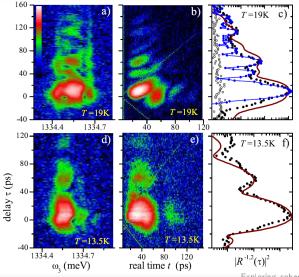




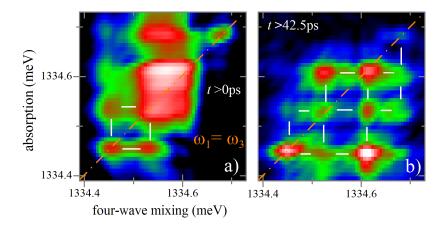
Summary II



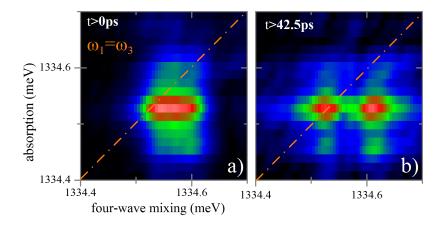
Summary II



Cavity-controlled inter-exciton coupling FWM pathway within the Tavis-Cummings model

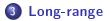


Cavity-controlled inter-exciton coupling Coherent dynamics measured in $FWM(\tau)$



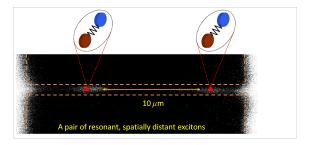
Cavity-controlled inter-exciton coupling revealed with two-dimensional FWM, 19 K

Cavity-controlled inter-exciton coupling revealed with two-dimensional FWM, 13.5 K



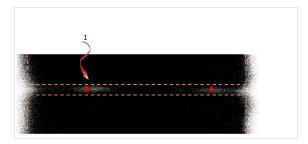
Outline

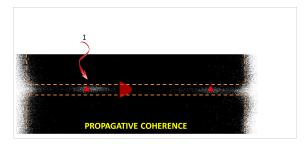
Coherent Coupling


System	Coupling Mechanism	Coupling range	Remarks
individual, localized excitons in a QW 2D	Coulomb repulsion in a 2-exciton state	Up to 1 μ m	mediated via extended delocalized excitons, disorder
cluster of excitons in a μ -pillar cavity 0D	radiative, polaritonic	~100 nm	photon-mediated, boosted by strong coupling
pair of excitons in a photonic wire 1D	radiative	?	enabled by waveguiding, requires resonant emitters

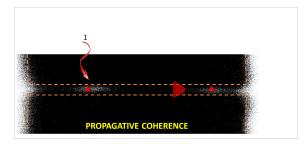
J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)

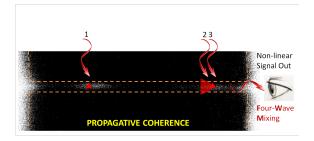
System	Coupling Mechanism	Coupling range	Remarks
individual, localized excitons in a QW 2D	Coulomb repulsion in a 2-exciton state	Up to 1 μ m	mediated via extended delocalized excitons, disorder
cluster of excitons in a μ -pillar cavity 0D	radiative, polaritonic	~100 nm	photon-mediated, boosted by strong coupling
pair of excitons in a photonic wire 1D	radiative	?	enabled by waveguiding, requires resonant emitters

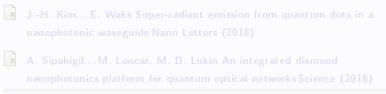

J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)

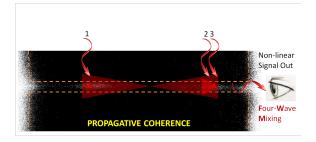

- J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)
- A. Sipahigil,...M. Loncar, M. D. Lukin An integrated diamond nanophotonics platform for quantum optical networksScience (2016)

- J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)
- A. Sipahigil,...M. Loncar, M. D. Lukin An integrated diamond nanophotonics platform for quantum optical networksScience (2016)

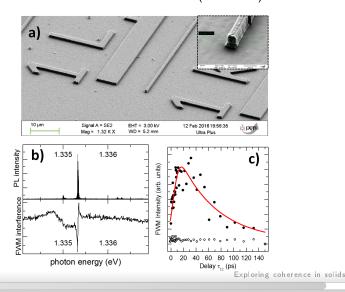





A. Sipahigil,...M. Loncar, M. D. Lukin An integrated diamond nanophotonics platform for quantum optical networksScience (2016)



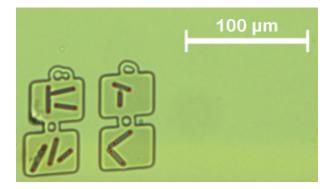
- J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)
 - A. Sipahigil,...M. Loncar, M. D. Lukin An integrated diamond nanophotonics platform for quantum optical networksScience (2016)


- J.-H. Kim,...E. Waks Super-radiant emission from quantum dots in a nanophotonic waveguide Nano Letters (2018)
- A. Sipahigil,...M. Loncar, M. D. Lukin An integrated diamond nanophotonics platform for quantum optical networksScience (2016)

Exploring coherence in solids

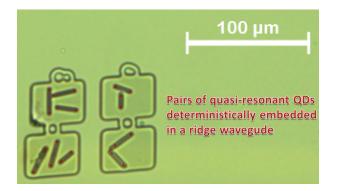
Spatially-resolved FWM

Deterministic wave-guides at hand, frequency tuning still needed P. Schnauber & S. Reitzenstein (TU Berlin)



21

Spatially-resolved FWM


Deterministic wave-guides at hand, frequency tuning still needed P. Schnauber & S. Reitzenstein (TU Berlin)

Spatially-resolved FWM

Deterministic wave-guides at hand, frequency tuning still needed P. Schnauber & S. Reitzenstein (TU Berlin)

Summary

Two-dimensional FWM:

- 2D spectroscopy of individual emitters & their small ensembles
- Assessment of coupling mechanism of weakly-confined excitons ⇒ Coulomb coupling
- Single- versus double-quantum coherence in 2D FWM
- Photo mediated coupling in a μ -pillar cavity
- Toward long-range radiative coupling